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We address continuous weak linear quantum measurement and argue that it is best understood in terms of
statistics of the outcomes of the linear detectors measuring a quantum system, for example, a qubit. We mostly
concentrate on a setup consisting of a qubit and three independent detectors that simultaneously monitor three
noncommuting operator variables, those corresponding to three pseudospin components of the qubit. We
address the joint probability distribution of the detector outcomes and the qubit variables. When analyzing the
distribution in the limit of big values of the outcomes, we reveal a high degree of correspondence between the
three outcomes and three components of the qubit pseudospin after the measurement. This enables a high-
fidelity monitoring of all three components. We discuss the relation between the monitoring described and the
algorithms of quantum information theory that use the results of the partial measurement. We develop a proper
formalism to evaluate the statistics of continuous weak linear measurement. The formalism is based on
Feynman-Vernon approach, roots in the theory of full counting statistics, and boils down to a Bloch-Redfield
equation augmented with counting fields.
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I. INTRODUCTION

The theory of quantum measurement, being a foundation
of quantum physics, is attracting more and more attention.1

Intrinsic paradoxes2 are definitely a main reason for studying
quantum measurements. More motivation comes from the
practical needs to understand the real solid-state based
devices3,4 developed for quantum computing.5 Measure-
ments in solid-state setups may provide access to extra vari-
ables that facilitate the read out of the quantum information
stored in the elementary two-level quantum systems �qubits�.
The concept of continuous weak linear measurement
�CWLM�, where the interaction between the detector and the
measured system is explicit and sufficiently weak, has been
recently elaborated in context of the solid-state quantum
computing.6–10 CWLM provides a universal description of
the measurement process and is based on general linear-
response theory.11 It applies to a large class of linear detec-
tors: From common amplifiers to more exotic on-chip detec-
tors such as quantum point contact,12 superconducting SET
transistors,13 generic mesoscopic conductors,14 and fluxons
in a Josephson transmission line to measure a flux qubit.15,16

It is an important feature of CWLM that the �quantum�
information is transferred from a quantum system being
measured—a qubit—to other degrees of freedom: those of
the detector. The outcome of the measurement is thus repre-
sented by the detector degrees of freedom rather than those
of the qubit. We will address both the statistics of the out-
comes and joint statistics of the outcomes and the qubit de-
grees of freedom.

We stress the difference between the detector outcomes
and the outcomes of a projective measurement of a qubit. In
distinction from the result of a projective measurement, the
detector outcome is not discrete since the detector output �for
instance, voltage or current� is a continuous variable. The
outcomes do not even have to correlate with the state of the
qubit if the detector is uncoupled. Further, the detector vari-

ables are subject to noise that is not related to the qubit.
Owing to the feedback of the detector at the qubit, this noise
affects the qubit too.

In comparison with the textbook projective measurement
that instantly provides a result and projects the system onto
the state corresponding to the result, the CWLM takes time
both to accumulate the information and to distort the qubit.
The time �m required to obtain a sufficiently accurate mea-
surement result is called “measurement time” and is a char-
acteristic of a CWLM setup. It is not a duration of an indi-
vidual measurement in this setup: the latter may vary. The
distortion is due to the inevitable back action of the detector
and is characterized by the dephasing rate �d. It has been
shown6–8 that for an optimized—quantum limited—detector
�m�d=1 /2 while the measurement time �m greatly exceeds
1 /2�d for less optimal detectors.

In the context of quantum information theory, CWLM
may be understood as an interaction of the qubit with infi-
nitely many ancillary qubits representing the detector de-
grees of freedom. Each ancilla is brought to weakly interact
with the qubit for a short time and is subsequently measured.
Owing to the interaction, the quantum state of the ancillae is
entangled with the state of the qubit. The detector output is
proportional to the sum of the measurement results of a large
set of ancillae. This allows to transfer quantum information
from the qubit to the detector without formal projective mea-
surement of the qubit. Therefore the peculiarities of the
CWLM can be understood in the framework of a projective
measurement, although a more complicated one involving
the detector degrees of freedom. The CWLM can be thus
seen as a buildup of an entanglement between the qubit and
the detector. An outcome of an individual CWLM is the de-
tector output accumulated during the time interval of a cer-
tain duration �d. Any CWLM can be described as a general-
ized quantum measurement, which involves qubit and
detector degrees of freedom.

The outcome randomly varies from measurement to mea-
surement. We argue here that studying statistics of the mea-
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surement outcomes of a CWLM is the best way to un-
derstand and characterize such a measurement. This is espe-
cially important for the simultaneous measurement of non-
commuting variables �say, A and B� we concentrate on in this
work. In this case, the textbook projective measurement can-
not help to predict the statistics of the results; it would de-
pend on the order of measurements of A and B. This property
of the measurements in noncommuting bases enables most
quantum cryptography17 algorithms and has been extensively
elucidated in Ref. 18.

One can straightforwardly realize, in experiment, a
CWLM of a quantum system where A and B are measured
simultaneously. If A and B commute, the statistics of the
outcomes of sufficiently long CWLM corresponds to the pre-
dictions of projective measurement scheme �see Sec. III�.
The projective measurement scheme loses its predictive
power if A and B do not commute. The reason is that the
order of measurement of A and B is not determined in the
course of a continuous measurement. The statistics of
CWLM outputs thus cannot be straightforwardly conjectured
and has to be evaluated from the quantum-mechanical treat-
ment of the whole system consisting of the qubit and the
detectors.

In a sharp contrast to the case of commuting variables, the
most probable outcome of a sufficiently long CWLM of non-
commuting variables does not depend on the qubit state.
Therefore, it provides no information about the qubit. The
information is, however, hidden in the statistics of random
outcomes. Recently, the simultaneous acquisition of two
noncommuning observables was investigated in the frame-
work of CWLM,9 and the correlation of the random output of
two detectors was found to be informative. Not only noise,
but the whole full counting statistics �FCS� of the noncom-
muting measurements has been recently addressed for an ex-
ample of many spins traversing the detectors.19

The structure of the article is as follows. We develop the
necessary formalism in Sec. II. Our approach stems from the
FCS theory of electron transfers20 in the extended Keldysh
formalism,21 which has been recently discussed22 in the con-
text of the quantum measurement. At first step, we obtain a
Feynman-Vernon action to describe the fluctuations of the
input and output variables of the detector�s�. In the relevant
limit, the action is local in time. So at the second step we
reduce the path integral to the solution of a differential equa-
tion that appears to be a Bloch-Redfield equation augmented
with the counting field. In Sec. III we exemplify the formal-
ism addressing a relatively simple case of quantum non-
demolition �QND� measurement.23 We evaluate the distribu-
tion of the outcomes for a single detector and understand the
statistics of a recently proposed quantum undemolition
measurement.10 The main results are presented in Sec. IV
where we discuss statistics of measurement of noncommut-
ing variables for the case of three independent detectors mea-
suring the three components of the qubit pseudospin. We find
the statistical correspondence between the three outcomes
and three wave-function components after the measurement.
The correspondence is characterized by a fidelity that gener-
ally increases with the magnitude of the outcomes reaching
the ideal value 1 in the limit of large magnitudes. Since very
large outcomes are statistically rare and require long waiting

times, this result could be of a purely theoretical value. To
prove the opposite, we have evaluated the fidelity at moder-
ate magnitudes of outcomes and measurement durations �d
and we were able to demonstrate the fidelity of 0.95 for �d
�7�m. We term this “quantum monitoring.” Ideally, the re-
sult of the quantum monitoring is a pure state of the qubit
and three numbers �detector outputs� giving the polarization
of the state. The same result can be also achieved by prepar-
ing the qubit state of the known polarization, for instance, by
a projective measurement along a certain axis. The difference
is that in the case of preparation the polarization axis is
known to the observer in advance, while in the case of moni-
toring it is not so; both the three numbers and the state
emerge from dynamics of the quantum system that encom-
passes the qubit and the detectors.

We discuss the relation between the quantum monitoring
proposed and the quantum algorithms that use the results of
partial measurements that we summarize in Sec. V. We
evaluate the detector action in the Appendix A. We prove in
the Appendix B that our approach correspond to a Lindblad
scheme for a system consisting of the detectors and the qubit.

II. METHOD

We start the outline of the formalism with a simplest setup
where a single detector measures a single component of the
qubit pseudospin. In this case, the Hamiltonian reads as fol-
lows:

H = Hq + Hint + Hd, �1a�

Hq = �
i=1

3

Hi�̂i;Hint = �̂3Q̂ . �1b�

Here, Hq is the Hamiltonian of the qubit generally given by a
linear combination of three Pauli matrices �̂i �i=1,2 ,3� cor-
responding to three components of the qubit pseudospin. Hint
gives the coupling between the detector and the third com-

ponent of the pseudospin of the qubit, Q̂ being the detector
input variable. Hd stands for the Hamiltonian of the detector.
Since we assume linear dynamics of the detector variables, a
general form of this Hamiltonian is that of a boson bath,

Hd = �
k

��kb̂k
†b̂k.

This encompasses infinitely many boson degrees of freedom

labeled by k, b̂k being the corresponding annihilation opera-
tors. The output of the detector is given by the output vari-

able V̂. An arbitrary linear dynamics is reproduced if both

variables Q̂ and V̂ are linear combinations of the boson
creation/annihilation operators,

Q̂ = �
k

�Qkb̂k
† + Qk

�b̂k� , �2�

V̂ = �
k

�Vkb̂k
† + Vk

�b̂k� . �3�

This is in the spirit of Caldeira-Leggett approach.24 In con-
trast to the work,24 we do not assume thermal equilibrium in
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the boson bath. In fact, this assumption would be wrong for
most practical detectors since a signal amplification cannot
take place in the state of thermal equilibrium. The only re-
quirement we impose is that Wick’s theorem holds for the
boson operators involved. This guarantees the linear dynam-
ics of the detector variables. Besides, this conveniently al-
lows us not to specify the coefficients Qk ,Vk. All information
about the coefficients and the nonequilibrium boson distribu-
tion is incorporated into the two-point correlators of the vari-
ables explicitly given below �Eqs. �7� and �8��. By virtue of
Wick’s theorem, the averages of all possible products of the
detector variables can be expressed in terms of these two-
point correlators.

We are interested in the statistics of the detector output

variable V̂. We note that this variable is distinct from those of
the qubit, and in principle even does not have to correlate

with the qubit state �e.g., if Q̂=0�. However, since the detec-
tor is supposed to measure the qubit, there must be a �high�
degree of correspondence between the detector output and
the qubit state. This sets the goal of our calculation: to access

the joint statistics of V̂ and the qubit variables.
To achieve the goal, we introduce a counting field ��t�

coupled to the output variable V̂ and use a modified
Feynman-Vernon scheme25 where the evolution of the “bra”
and “ket” wave function is governed by different Hamilto-

nians H− and H+: H�=H����t�V̂ /2. � corresponds to two
branches of closed time contour, respectively.26,27 This
scheme was first employed in the work.28 The counting field
��t� plays a role of the parameter in the generating function
of the probability distribution of the detector outcomes V�t�.
This generating function is given by:

Z����t��� = Tr�T�e−i/�	dtH−
R̂�0�T�ei/�	dtH+

� . �4�

Tr�¯� implying the trace over both detector and qubit vari-

ables. Here, T� �T� � denotes time �reversed� ordering in evolu-

tion exponents and R̂�0�= 	̂d�0� � 	̂�0� is the initial density
matrix of whole system. It separates into 	̂d�0� and 	̂�0�, the
initial density matrix of the detector and qubit, respectively.
This implies that the detector and the qubit do not interact
before the initial time moment t=0.

Next, we employ the path-integral representation for the
probability-generating function.28 According to Feynman and
Vernon25 �see also Ref. 29�:

Z����t��� =
 DX̄+DX̄−eAdZIq�Q−,Q+� , �5�

here X̄��t� are two-dimensional vectors of the detector vari-

ables X̄��t�= �Q��t� ,V��t��T, DX̄���
t

dQ��t�dV��t�. Q��t�,

V��t� are the path-integral variables. ZIq is called the “influ-
ence functional” and is given by

ZIq�Q−,Q+� = Trq�T�e− i
�
	dt�Hq+�̂3Q+�t��	̂�0�


 T�e
i
�
	dt�Hq+�̂3Q−�t��� , �6�

where Trq means the trace over qubit space. The action Ad in

Eq. �5� is bilinear in X̄� and � to conform to linear dynamics
of the detector and will be specified below. The advantage of
this representation is that the dynamics of infinitely many
detector degrees of freedom have been reduced to the dy-

namics of only two relevant fields: Q̂ and V̂. The influence
functional describes a nonlinear response of the qubit on the
fields.

Let us turn to a specific model of linear dynamics of the
detector. Following common assumptions about CWLM,7,8

we assume instant detector responses and white �frequency-
independent� noises. Under these assumptions, a detector is
characterized by seven independent parameters: four re-
sponse functions and three noises. It is convenient to use an
index i taking values 1 and 2 for input and output variables,
respectively. With this index, we present four response func-
tions aij as a single 2
2 matrix. The noises Sij form a simi-
lar matrix. By virtue of Kubo formula, the response functions
are expressed in terms of expectation values of the operator
commutators

−
i

�
�Q̂�t�,Q̂�t���� = a11��t − t� − 0+� , �7a�

−
i

�
�Q̂�t�,V̂�t���� = a12��t − t� − 0+� , �7b�

−
i

�
�V̂�t�,Q̂�t���� = a21��t − t� − 0+� , �7c�

−
i

�
�V̂�t�,V̂�t���� = a22��t − t� − 0+� , �7d�

where an infinitesimal small positive number 0+ in the �
function represents small but finite response time.

The noises correspond to the expectation values of sym-
metrized operator products,

�� Q̂�t�Q̂�t�� + Q̂�t��Q̂�t�
2

�� = S11��t − t�� , �8a�

�� V̂�t�V̂�t�� + V̂�t��V̂�t�
2

�� = S22��t − t�� , �8b�

�� Q̂�t�V̂�t�� + V̂�t��Q̂�t�
2

�� = S12��t − t�� , �8c�

�� V̂�t�Q̂�t�� + Q̂�t��V̂�t�
2

�� = S21��t − t�� , �8d�

here, ÂB̂����Â− Â���B̂− B̂��� for any operators Â and B̂.
Let us discuss the physical meaning of the parameters

involved. S11 is the noise of the input variable responsible for
the back action of the detector and decoherence of the qubit;
S22 is the output noise that prevents a fast measurement of
the detector outcome. The cross term S12=S21 presents the
correlation of these two noises. The response function a21
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determines the detector gain: The proportionality coefficient
between the detector output and the third component of the

qubit pseudospin, V̂�=a21�̂3�. Other response functions a12,
a22, a11 are, respectively, related to reverse gain, output and
input impedances of the detector and are not of immediate
interest for us. The detector is characterized with the dephas-
ing rate �d=2S11 /�2 and the measurement time
�m=S22 /a21

2 .7,30 The Cauchy-Schwartz inequality

S11S22 − S12
2 �

�2

4
�a21 − a12�2

imposes an important restrictions on the possible values of
the parameters.7,8 Following the common assumption, we as-
sume that the reverse gain a12 is much less than the direct
gain a21: a21a12. This condition is commonly required
from a good amplifier. Under these assumptions, �m�d
�1 /2, one cannot measure a qubit without dephasing it.

The action Ad corresponding to the model reads

Ad =
 dt�−
1

2
x̄T�t��ǎ −1�TŠǎ −1x̄�t�

+ iX̄T�t�ǎ −1x̄�t� + i�̄T�t�X̄�t�� , �9�

the derivation is outlined in the Appendix A. Here we switch

to the “quantum” x̄ and “classical” X̄ variables defined as

follows: x̄= �X̄+− X̄−� /�, X̄= �X̄++ X̄−� /2. �̄= �0,��T. The 2


2 matrices ǎ and Š are, respectively:

ǎ = �a11 a12

a21 a22
� , �10a�

Š = �S11 S12

S21 S22
� . �10b�

It is important for further advance that the action �9� is
local in time. This allows for reducing the path integral to a
differential equation. The procedure is completely similar to
the standard reduction of the corresponding path integrals to
either Schrödinger or Fokker-Planck equations.31 One slices
time axis into intervals �tk , tk+1� �tk=k�t. k is an integer�, and
takes the path integral in Eq. �5� without tracing over the
qubit indices slice by slice. The result of the integration at tk
is a matrix in qubit indices, 	̂�tk�. Integrating over x ,X in the
next slice, one finds a linear relation between 	̂tk+1

and 	̂tk
:

	̂��;tk+1� =
 �
tk�t�tk+1

Dx̄�t�DX̄�t�eAdŜ+	̂��;tk�Ŝ−; �11�

Ŝ� = exp��
i

��Hq�t + �̂3

tk

tk+1

dtQ��t��� . �12�

Since the slice is thin, the exponents may be expanded,

Ŝ� � 1̂ �
i

��Hq�t + �̂3

tk

tk+1

dtQ��t��
−

1

2�2 

tk

tk+1

dtdt�Q��t�Q��t�� + . . . ,

and the integration is reduced to evaluation of the averages
and the correlators of the fields Q� with the action Ad. Col-
lecting terms ��t and taking the limit �t→0, we obtain a
differential equation for 	�t� that resembles a familiar Bloch-
Redfield equation but essentially depends on the counting
field �.32 The resulting equation for 	�� ; t� reads:

� 	̂

�t
= −

i

�
�Hq, 	̂� −

�2�t�
2

S22	̂ +
ia21��t�

2
�	̂�̂3 + �̂3	̂�

−
S12

�
��t��	̂�̂3 − �̂3	̂� −

S11

�2 �	̂ − �̂3	̂�̂3� . �13�

How to apply the equation? Let us consider a single mea-
surement first. Let �d be the duration of the measurement. We
collect the detector output during the time interval �0,�d� and
normalize it by �d

Vo =
1

�d



0

�d

V�t�dt . �14�

To get the statistics of Vo, we should assume that � is a
constant in the interval �0,�d�. Indeed, expanding of the gen-
erating function in terms of � gives the averages of products
of Vo. Let us suppose that the initial density matrix of the
qubit is 	̂�0�. We solve the Eq. �13� with the initial condi-
tions 	̂�� ,0�= 	̂�0�. The output is a �-dependent matrix
	̂���� 	̂�� , t=�d� after the measurement.

We stress that 	̂��� appearing in the equation is not the
reduced qubit density matrix. It is a more interesting and
complicated quantity that reflects the joint probability distri-
bution of the qubit pseudospin components after the mea-
surement and the detector outcome collected. To see this, let
us define the reduced density matrix of the qubit and the

outcome Vo, R̂�Vo ,Vo��. It is a matrix in qubit indices and in
the outcome values Vo ,Vo� �see Appendix B for the details�.
Its diagonal elements give the statistics in question. The re-
duced qubit density matrix �with no regard for the value of
the outcome� is given by

	̂ =
 dVoR̂�Vo,Vo� ,

the probability distribution of the outcomes �with no regard
for the qubit state� reads

P�Vo� = TrqR̂�Vo,Vo� ,

and the joint statistics is expressed in terms of the qubit
density matrix conditioned to a certain value of the output,

	̂�Vo� = R̂�Vo,Vo�/P�Vo� .
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The quantity in use, 	̂���, is related to the diagonal ele-

ments of thus introduced density matrix R̂ by means of Fou-
rier transform,28

R̂�Vo,Vo� =
t

2�

 d�	̂���e−i�Vot. �15�

presenting a generating function for the quasidistribution

R̂�Vo ,Vo�. Comparing this with the above definitions, we find
convenient relations

	̂�t� = 	̂�� = 0�, P�V0� = t
 d�

2�
e−i�VotTrq	̂���,

	̂�Vo� =
	d�	̂���e−i�Vot

	d�Trq	̂���e−i�Vot .

We here used the normalization condition Trq	̂���=1. It is
the main technical advantage of our work that Eq. �13� is
similar in form to an elementary Bloch-Redfield equation for
the qubit density matrix and not much complicated than that
one. However, in its augmented form, it solves a much more
challenging task of finding the joint probability distribution
of the detector outcome and the qubit state.

It is important to note that Eq. �13�, as well as Eq. �17� for
multidetector setup, complies with a Lindblad scheme.33,34

We will show this explicitly in Appendix B. This guarantees

the positivity of the “big” density matrix R̂�Vo ,Vo�.
The locality in time is a relevant but strong assumption

which in fact corresponds to a classical detector �indeed, the
action �9� does not contain any ��. This is why we do not
have to worry about possible quantum uncertainties of the
detector output that could complicate the interpretation of the
statistics.28

The scheme can be easily extended to many repetitive
�that is, being constantly repeated� measurements to comply
with the concept of CWLM. Let us consider �infinitely�
many subsequent measurements. For ith measurement, the
detector output is collected during the time interval �ti , ti+1�.
This gives a series of outcomes Vo

�i�. To describe the joint
statistics, one solves Eq. �13� with a piece-wise constant ��t�,
��t�=�i in the interval �ti , ti+1�. The solution of the equation
at the time moment tM+1 depends on M counting fields: 	̂
= 	̂��1 , . . . ,�M�. The Fourier transform with respect to all �i
defines the qubit density matrix conditioned on the outcomes
Vo

�i� of all M preceding measurements. We illustrate two sub-
sequent measurements in Sec. III

Importantly, the scheme described can also be easily ex-
tended to more qubits and/or detectors: One just adds extra
�counting� fields for detectors and extra Pauli matrices for
qubits. The case of interest for us is the simultaneous CWLM
of three pseudospin projections of a qubit. The coupling term
becomes

Hint = �̂1Q̂1 + �̂2Q̂2 + �̂3Q̂3. �16�

Q̂k �k=1,2 ,3� being the input fields of the three detectors.
Three counting fields �k are coupled to the corresponding

output variables V̂k of the three detectors.

While it is straightforward to write down the equation for
general situation, we employ a specific model at this point.
Namely, we assume for simplicity that the detectors are iden-
tical and independent. “Identical” implies that the noises and
response functions of all three detectors are the same. “Inde-
pendent” implies that no response function relates inputs/
outputs of two different detectors, neither the noises corre-
late. Each detector is described by the action in
corresponding variables. Under these assumptions, the setup
is conveniently SU�2� covariant.

The resulting �-augmented Bloch-Redfield equation reads

� 	̂

�t
= −

i

�
�Hq, 	̂� − ��

k=1

3
�k

2

2
�S22	̂ +

ia21

2 �
k=1

3

�k��̂k, 	̂�+

+
S12

�
�
k=1

3

�k��̂k, 	̂� −
S11

�2 �3	̂ − �
k=1

3

�̂k	̂�̂k� . �17�

Comparing this with Eq. �13�, we see that each detector con-
tributes a term to the equation. Each term comes with the
corresponding counting field and � matrix.

III. STATISTICS OF QND MEASUREMENT

Before turning to the measurements of noncommutative
variables, let us first illustrate the formalism with a single-
detector setup. Only a single component �̂3 will be mea-
sured. We will be interested in a quantum QND setup where
successive measurements are performed. Such QND mea-
surements have been recently realized for superconducting
qubits.35 To satisfy the nondemolishing condition,23 we set

Ĥq=��̂3 in Eq. �1� so that Hq and Hint commute. In this case,
Hq can be canceled by transformation to the rotating frame,

	̂→eiĤqt/�	̂e−iĤqt/�, and will be disregarded from now on.
Let us perform two measurements that immediately fol-

low each other. During the first measurement of duration t1,
the detector output is collected in the time interval �0, t1� so
the measurement outcome is V1=	0

t1dtV�t� / t1. Similarly, for
the second measurement V2=	t1

t1+t2dtV�t� / t2. The statistics of
the two outcomes is computed from Eq. �13� by setting ��t�
to a piece-wise constant ��t�=�1��2� during the first �second�
time interval and ��t�=0 otherwise. To solve the equation,
we parameterize 	̂�� ; t� as follows:

	̂��;t� =
1̂ + �̂3

2
	+��;t� +

1̂ − �̂3

2
	−��;t�

+ �̂1	1��;t� + �̂2	2��;t� , �18�

where 1̂ is the unit 2
2 matrix in the qubit space, 	� give
diagonal elements of the matrix and 	1,2 give the nondiago-
nal ones. Equations �18� and �13� yield two pairs of separat-
ing equations:

�	+

�t
= i�a21	+ −

�2

2
S22	+, �19a�
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�	−

�t
= − i�a21	− −

�2

2
S22	−, �19b�

and

�	1

�t
= −

2iS21�

�
	2 − ��d +

�2

2
S22�	1, �20a�

�	2

�t
=

2iS21�

�
	1 − ��d +

�2

2
S22�	2. �20b�

We first assume that the initial density matrix of the qubit
is diagonal. We solve 	��� ; t� with initial conditions 	��0� at
t=0. We note that at the initial time t=0, 	̂ does not depend
on � or Vo and thus we do not write them explicitly for the
initial conditions. Solving the equations and Fourier trans-
forming the generating function yields a very simple prob-
ability distribution of both outcomes:

P�v1,v2� = �
�

��1�2

2�
	��0�e−

��1�1�2�1
2 e−

��2�1�2�2
2 . �21�

To keep it simple, we have switched here to the dimension-
less durations �=�d /�m, and outcomes v=Vo /a21. The result
is in fact classical; it does not depend on the dephasing rate.
In allows for an elementary interpretation; initially, the qubit
appears to be either in the state + or −, with probabilities
	+�0� and 	−�0�, respectively. The state persists during the
measurements. The outcome of each measurement is distrib-
uted normally around �1 with the standard deviation ��1,2
set by the duration of the measurement. We note that the
persistence of a state is specific for QND measurements, and,
as we see in Sec. IV, does not apply to the CWLM of non-
commuting variables.

In Fig. 1, the solid lines show the distribution of outcome
P versus v for two different durations �1=2 �long, lower
curve� and �1=0.3 �short, upper curve�. Two obvious peaks
located at v= �1 for the line �1=2 are due to the two states
of the qubit that can be distinguished in the course of the
long measurement. For the short measurement �1=0.3, the

detector cannot resolve the difference between two eigen-
states of the qubit. Thus we see a single peak at v=0 broad-
ened by the noise of the output variable. The dotted lines
show the probability distribution P of the outcome of the
second measurement of the same duration under condition
that the outcome of the first measurement v1=−1. For long
measurement ��2=2�, the probability distribution is concen-
trated near v=−1. For the short measurement ��2=0.3�, the
distribution is similar to that of the first measurement, its
average being close to v=0. This makes a comprehensive
illustration of the fact that the sufficiently long measure-
ments are repeatable, that is, the result of the second mea-
surement is close to the result of the second one. This is not
the case for the short measurement.

To illustrate the quantum aspect, let us set the initial den-
sity matrix to correspond to a pure state with the wave func-
tion that is an equal superposition of the base states �:
	̂�0�= �̂1. We are interested in the average value of the cor-
responding pseudospin projection �̂1 after the measurement
provided the outcome v. We evaluate this average if we
know the qubit density matrix 	̂�v� conditioned on the out-
come v,

�1�v� � Tr��̂1	̂�v�� . �22�

As discussed in the Sec. II, this qubit density matrix is com-
puted from the normalized Fourier transform of 	̂���, the
latter is obtained by solving Eqs. �20a� and �20b� on time
interval �0,��, � being duration of the measurement.

Since Eqs. �20b� do contain the dephasing rate, the result
will depend on actual dephasing. The answer reads

�1�v;�� =
cos�C12v��
cosh�v��

e−C/2�. �23�

Here, we introduce dimensionless constants C�4�S11S22
−S12

2 � / ��a21�2−1 and C12=2S12 /�a21. C�0 characterizes
the quality of the detector, and C=0 for a quantum-limited
one. C12 characterizes the correlations of the noises, for a
quantum-limited detector C12=0 as well.

Generally, �1�v ,�� quickly decays with increasing �. This
manifests the dephasing of the superposition by the measure-
ment. Remarkably enough, for a quantum-limited detector
�C=C12=0� and for a special value of the measurement out-
come v=0, the dephasing is absent. The wave function re-
tains its initial value for this particular value of output. This
fact has been noted in the work10 and termed “quantum un-
demolition measurement.” Let us note that the phase shift
between the states �, acquired from the detector,
2	0

�dtQ�t� /�, is zero at this �rather improbable10� value of the
outcome. We stress that the strict correspondence between
the phase shift and outcome does not hold for a general de-
tector, so that �1�v=0,��=exp�−C� /2� decreases with the
measurement duration � indicating the nonvanishing dephas-
ing of the superposition. We plot �1�v ;�=1� versus the de-
tector outcome v for the duration of measurement �=1 in
Fig. 2. The solid line is for the quantum-limited detector
�C=C12=0�, and the dotted line is for the worse detector
�C=C12=1�.
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FIG. 1. �Color online� Quantum nondemolition setup: Two suc-
cessive measurements. In each pair of the curves, the solid one
gives the distribution of outcome of the first measurement while the
dashed one gives the distribution for the second measurement pro-
vided the first measurement gave v1=−1. Lower �upper� pair of
curves corresponds to long, �1,2=2 �short, �1,2=0.3� duration of
measurement. The long measurement is thus repeatable, the short
one is not.
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IV. THE STATISTICS OF THE CWLM OF
NONCOMMUTING VARIABLES

In Sec. III we provided simple examples to prove the use
of the statistical approach. Thus encouraged, we turn to the
statistics of the CWLM of noncommuting variables. The in-
teraction Hamiltonian is now given by Eq. �16�. We do not
want to deal with the qubit Hamiltonian Hq=��3 and shall
assume that it is removed by transforming to the rotating
frame. The same transform makes �1,2 to rotate with angular
velocity � /�. To compensate for this, let us presume that the
signal from �1,2 is collected at frequencies � /� rather than at
zero frequency as the signal from �3. Mathematically, we
define the outcomes of the detectors 1, 2 as

�dV1,2 = 

0

�d

dt�cos� �t

�
�V1,2�t� � sin� �t

�
�V2,1�t�� .

�24�

This can be practically realized in a very same way as it is
done in a radio set. One has to mix a high-frequency signal
with a reference signal of the same frequency and detect the
low-frequency component of the product.

Let us evaluate 	̂��1 ,�2 ,�3�. Without the term Hq, the Eq.
�17� is readily solved in a proper basis in the pseudospin
space. In this basis, one of the Pauli matrices is defined as
�̂�= ��1�̂1+�2�̂2+�3�̂3� /�s, while two others, �̂� and �̂�,
are chosen to be orthogonal to it. We have introduced �s as
follows: �s���1

2+�2
2+�3

2. We parameterize 	̂ as follows:

	̂ = 	01̂ + 	��̂� + 	��̂� + 	��̂�. �25�

From Eqs. �17� and �25� we obtain two equations involving
	0 and 	�:

�	0

�t
= ia21�s	� −

�s
2

2
S22	0, �26a�

�	�

�t
= ia21�s	0 − �2�d +

�s
2

2
S22�	�. �26b�

We stress that the CWLM we are about to describe is

hardly a measurement of the initial state of the qubit. In
contrast to QND where the dephasing is limited to 1, 2 com-

ponents, the input variables Q̂1,2,3 of the detectors randomly
rotate the pseudospin in all three directions. The quantum
information about initial state is lost rather quickly; at the
time scale of 1 /�d. That is, it is lost before a statistically
reliable measurement result can be accumulated. This moti-
vates us to choose the unpolarized density matrix as initial
condition for the state of the qubit before the measurement,

	̂�0� =
1

2
1̂. �27�

We will see, however, that despite the memory lost the
CWLM of noncommutative variables can be rather informa-
tive.

Let us first discuss the distribution of the detector outputs.
We first solve Eqs. �26a� and �26b� with the initial condition
�27�, and then recall Eq. �5�. In the limit of long durations
�1, the log of the generating function reads:

− log Z = ��Cd − �Cd
2 − �s

2 +
�s

2

2
� , �28�

where �i has been made dimensionless �iS22 /a21→�i as to
give the cumulants of dimensionless outputs vi. Here, Cd
��d�m= �C+1+C12

2 � /2�1 /2.
The cumulants of the outcomes can be evaluated by tak-

ing the derivatives of the log Z with respect to �i. The pres-
ence of the qubit enhances output noises of each detector by
the factor 1+1 /Cd:

viv j�� = −
�2log Z

��i � � j
��i,j=0 =

1

�
�1 +

1

Cd
��ij . �29�

There is no correlation of noises between different detectors.
Such correlation arise for fourth cumulants

vi
2v j

2�� = −
�4log Z

��i
2 � � j

2��i,j=0 = −
1 + 2�ij

�Cd��3 . �30�

The distribution is isotropic in three outputs depending on
v��v1

2+v2
2+v3

2 only, and in the limit of long durations we
can calculate it by the saddle-point method, determining an
optimal �� corresponding to a given outcome v. We obtain

log P�v� = log Z����v��;
� log Z

��s
��s=�� = iv� . �31�

�� is purely imaginary. We plot log�P� /� vs v for three dif-
ferent values of Cd in Fig. 3. The solid line is for the
quantum-limited detector �Cd=1 /2�, the dashed line is for
the worse detector �Cd=2�. The dotted line is for the detec-
tors not connected to the qubit �Cd=��. So it is a parabola
corresponding to the Gaussian distribution of outcomes in
this case. We see that the distribution is concentrated at zero.
Typical values of outcomes v�1 /�� and for these typical
values the distribution can be approximated estimated by a
Gaussian one P�exp�−v2 /2�1+1 /Cd��. At larger �and thus
atypical� values of outcomes �v�1�, the distribution is es-
sentially non-Gaussian. We see from the plots that the pres-
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v

FIG. 2. �Color online� “Undemolition” measurement. The aver-
age value of pseudospin component �1�v ;�� conditioned on the
detector outcome v characterizes the dephasing of the superposition
after a QND measurement of duration � ��=1 for the plots�. A
quantum-limited detector �C=C12=0, upper curve� allows for the
quantum undemolition measurement ��1=1 at v=0�. This does not
work for a worse detector �C=C12=1, lower curve�.
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ence of the qubit exponentially enhances probabilities of
such outcomes.

Let us discuss the correlation of the detector outputs and
the pseudospin after such measurement, thus turning to the
joint statistics of the measurement outcomes and the result-
ing qubit state.

We characterize the correlation with a fidelity f�v�, inner
product of the normalized vector of the outcomes and aver-
aged pseudospin at given outcome v:

f =
�i

�i�vi

v
;�i� = Trq��̂i	̂�v�� , �32�

where 	̂�v� is defined in Eq. �15�. The fidelity is 1 if the
normalized values of the outputs precisely give all three
pseudospin components. Analyzing the saddle-point solution
for the 	̂�v ;��, we obtain that f does not depend on � in the
limit �1. Importantly, at large values of the outcomes v
1, the fidelity reaches the ideal value f �1−Cd /v. This,
quite unexpectedly, enables an efficient quantum monitoring
of noncommuting variables.

The monitoring procedure is as follows. Starting from
some initial state, one performs a series of repetitive mea-
surements of duration �. The three outcomes vi of each mea-
surement are written down. For most measurements, the val-
ues of the outcomes are typical, that is, and do not exceed the
results of such measurements which correspond to low fidel-
ity and are therefore discarded. One specifically waits for a
measurement that gives sufficiently big values of outcomes.
To decide if the outcomes are sufficiently big, one estimates
the fidelity of each measurement given the values of out-
comes and the relation f�v�. If one wants to achieve the
desired accuracy ades, one thus waits for the outcomes satis-
fying f�v��1−ades. The big values of outcomes guarantee
that the fidelity f�v� is sufficiently high. Sooner or later, a
measurement gives the sufficiently big outcomes. The quan-
tum monitoring takes place. At this moment, the state of the
qubit is known with the accuracy desired and it is given by

the values of outcomes 	̂=�ivi /v. Since 	̂2= 1̂, this is a pure
state.

We stress that the monitoring does not constitute a single-
shot measurement of all components of the initial unknown
quantum state. This would be forbidden by the basic laws of

quantum mechanics. Indeed, the time required for an accu-
rate monitoring exceeds by far the measurement time of the
detectors. By this time, the initial state is completely forgot-
ten. However, the monitoring gives the observer complete
information about the final quantum state.

One also could argue that any pure state of the qubit can
be obtained in a simpler fashion. One would just choose a
proper Hq and wait for dissipation to bring the qubit to the
state of lowest energy. One could also try a projective mea-
surement in a certain basis: after several tries, such measure-
ment would give the state desired. We note, however, that for
both approaches the resulting pure state is a priori known to
the observer. This is not the case of quantum monitoring:
here we let the quantum system to make “its own choice” of
the final pure state and do not enforce this choice by any
means.

The better the accuracy desired ades�1− f �1, the bigger
outputs are required, v�Cd /ades. The typical waiting time
grows exponentially. To estimate it, we assume the duration
of each measurement � is in the order of �m. This is because
the longer durations are not favorable due to decoherence.
The waiting time is inversely proportional to the probability
to have sufficiently high outcomes �w�� / P�v ;��. Since the
success probability is exponentially small: P�v ;���exp�
−v2� /2� from the saddle-point solution, we then estimate
�w�exp�v2�. Therefore, we shall expect

log��w� � ades
−2 .

This estimation of the waiting time of successful quantum
monitoring sounds pessimistic or at least causes a doubt con-
cerning the practical feasibility of the monitoring. To prove
that the monitoring is practical, we are going to show that a
reasonably high fidelity can be achieved in a reasonably
short time.

The above arguments are based on the analytical saddle-
point solution valid at large �. Now we investigate the mea-
surements of moderate duration, ��1. This can only be done
by numerical calculation. Solving Eqs. �26a� and �26b� and
making the Fourier transformation according to Eq. �15�, we
evaluate and plot f�v� of a single measurement of duration �
versus � for the quantum-limited detector and the worse de-
tector �Cd=2� in Fig. 4 and Fig. 5, respectively. Each curve
gives f��� at a given outcome v. At each curve, we put a
“bullet” to indicate the duration of measurement � at which
the probability to obtain the outcomes larger than the given
one is 10%. Similarly, we put a “triangle” to indicate � at
which the probability is 50%. To find the positions of the
symbols, for each v we solve numerically for the values of �
that satisfy



v

+�

Tr	̂�v�,��v�2dv�



0

+�

Tr	̂�v�,��v�2dv�

= 10%�50%� , �33�

respectively. We see from the plots that f =0.95 is achieved
for a quantum-limited detector at v=4 and �=0.7. At these
parameters, 10% of the measurements are successful, i.e.,
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FIG. 3. �Color online� Logarithm of the outcome distribution.
The curves from the top to the bottom: quantum-limited detector
�Cd=1 /2�, worse detector �Cd=2�, detector not connected to the
qubit.
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give the output v�4. To achieve a success, the measurement
has to be repeated typically ten times given the success prob-
ability of 10%. We conclude that the 5% accuracy is typi-
cally achieved in a time interval �10
0.7�m=7�m. This is
not much slower than the QND measurement of the same
accuracy.

Let us explain the relation between the monitoring dis-
cussed and the quantum algorithms that use the results of
partial measurement. These algorithms have been introduced
in the context of two-qubit systems36,37 but also may be ap-
plied to a general quantum state.38 Speaking very generally,
such algorithms start with a quantum state, pure or mixed,
and aim at producing another state �pure and/or highly en-
tangled�. They proceed in steps. Each step involves interac-
tion with ancilla qubits that results in an entanglement of the
qubit and the ancillae. Importantly, the projective measure-
ment of ancilla qubit�s� is performed at each step. The result
of this measurement is used to decide upon next step: pos-
sible decisions include to request the initial state, to stop
since the fidelity desired is reached, and to apply a certain
quantum gate.

The quantum monitoring proceeds similarly. It starts with

an almost isotropic initial state 	̂=1̂. The qubit is being mea-
sured by our three independent quantum limit detectors dur-
ing a time interval �. The outcome of the detectors is used to
make a decision. If the sum of the square of the three detec-
tors output vi of are small: �v1

2+v2
2+v3

2�4, the measurement
is disregarded; this is an analog of requesting the initial state.
The measurement is repeated until the values of the outputs
are sufficiently high v=�v1

2+v2
2+v3

2�4. In this case, the
monitoring may stop since its goal is reached: the qubit is
purified to a state given by the detector outputs v1, v2, and
v3. Since the vi �i=1,2 ,3� are random, the purified state of
the qubit is also random. Thus one could say that the CWLM
monitoring implements a quantum algorithm of the sort de-
scribed, in the same sense as an analogous computer may
implement discrete computer algorithms.

V. SUMMARY

In conclusion, we have shown how to evaluate the full
statistics of the outcomes of a CWLM on a qubit. We are also
able to evaluate joint probability distribution of the outcomes
and the qubit variables after the measurement. For a single
detector, we have illustrated the QND measurements and un-
derstood the recent proposal of quantum undemolition mea-
surement. Most interesting results concern the simultaneous
CWLM of three noncommuting variables by three detectors.
Such “measurement” is obtrusive and typically scrambles the
initial qubit wave function. However, we have demonstrated
a high degree of correspondence between the wave function
after the measurement and the outcomes of the three detec-
tors. Therefore, such CWLM may be used for high-fidelity
quantum monitoring of the qubit. The monitoring in fact
amounts to a purification of the qubit state in a random di-
rection v� = �v1 ,v2 ,v3� / �v� at Bloch sphere, v1−3 being random
outputs of the detectors. We have drawn analogy with quan-
tum algorithms that use the outputs of ancilla measurements
to decide on the purification degree reached and the quantum
gates to be applied.

The interpretation we give to the results is of course not
the only possible one. The communications with several col-
leagues have convinced us that “interesting” and “important”
defy an unambiguous definition as far as theory of quantum
measurement is concerned. In any case, we have developed
calculational tools to access the joint probability of the qubit
degrees of freedom and the outcomes of linear detectors
measuring the qubit. We have also derived the representative
results. It is up to the reader to conclude.
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APPENDIX A: DERIVATION OF THE DETECTOR
ACTION

The derivation of the path-integral representation for a set
of variables linear in boson creation/annihilation is a
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FIG. 4. �Color online� Fidelity of quantum monitoring f vs the
measurement duration � for quantum-limited detector. From upper
to lower curve v are, respectively, 4, 3.5, 3, 2.5, 2, and 1.5. Bullets
at each curve indicate the value of � at which the probability to get
the outcome larger than the corresponding v for each curve is 10%;
triangles at each curve indicate the value of � at which the prob-
ability to get the outcome larger than the corresponding v for each
curve is 50%.
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FIG. 5. �Color online� Fidelity of quantum monitoring f versus
the measurement duration � for worse detector �Cd=2�. From upper
to lower curve v are, respectively, 4, 3.5, 3, 2.5, 2, and 1.5. Bullets
at each curve indicate the value of � at which the probability to get
the outcome larger than the corresponding v for each curve is 10%;
triangles at each curve indicate the value of � at which the prob-
ability to get the outcome larger than the corresponding v for each
curve is 50%.
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straightforward task. It is instrumental in dissipative quan-
tum mechanics and therefore is to be found in basic literature
on the subject. References 24 are usually cited in this respect.
Owing to the simplicity of the problem, there are many other
derivations of the kind that are tailored to specific models
�e.g., Ref. 31� and usually assume thermal equilibrium of the
boson bath. To avoid any confusion, we present this part of
the derivation here. We do the derivation in the most general
terms possible and specify to the concrete model in use at the
later stage of the calculation.

Let Xj be a set of the variables linear in boson creation/

annihilation operators, X̂j�t� being the Heisenberg time-
dependent operators of these variables. Let us first disregard
the coupling with the qubit, so that the time dependence of

X̂j�t� is governed by the detector Hamiltonian Hd only. Ex-
plicitly, the Heisenberg equation reads

dX̂j�t�
dt

=
i

�
�Hd,X̂j�t�� .

We are interested in the generating function of the vari-
ables which we present in the following form �c.f. Eq. �4��

Z��� j�t��� = Tr�T�ei/2	dtX̂j�t��j�t�	̂d�0�T�ei/2	dtX̂j�t��j�t�� .

We assume summation over repeating indices j and skip time

indices of X̂�t�, ��t� for brevity. Differentiating with respect
to the parameters � j

��t� of the generating function, one re-

produces all possible products of the operators X̂j�t�.
Let us introduce a path integral over the variables Xj

��t�
associated with the operators X̂j�t� by means of the following
identity:

Z��� j�t��� =
 DX̄+DX̄−Tr�T��
t,j

� �Xj
−�t� − X̂j�t��


ei/2	dt�Xj
−+Xj

+��j	̂d�0�T��
t,j

� �Xj
+�t� − X̂j�t��� .

�A1�

Here we insert � functions that replace the operators X̂j�t� by
the fluctuating fields Xj

��t�, separately for two parts of the
Keldysh contour.

The use of this representation is that we can treat the
coupling between the detector and an arbitrary quantum sys-
tem in the form of the influence functional. If the coupling
between the detector and the system has the form

Hint = �
j

X̂j�t�Ŝj;

Ŝj being operators defined in the subspace of the quantum

system, we can formally substitute X̂j�t�→Xj
��t�. The result-

ing influence functional thus reads

ZIq��Xj
−�t��,�Xj

+�t��� = Tr
S

�T�e−i/�
 dtXj
−Ŝj	̂S�0�T�ei/�	dtXj

+Ŝj� ,

�A2�

where the trace is over the subspace of the quantum system,
	̂S�0� is its initial density matrix and the time dependence of

Ŝj is governed by the separate Hamiltonian on the subspace
of the quantum system.

Let us turn to the evaluation of the representation �A1�. To
facilitate the operations with � functions, we represent them
by means of extra integration over the auxiliary variables
k��t� /�. At each time moment,

��Xj
� − X̂j� =
 dkj

�

2�
eikj

+�Xj
�−X̂j�.

With these extra variables, the integral becomes

Z��� j�t��� =
 DX̄+DX̄−Dk̄+Dk̄−ei	dtXj
−�kj

−+�j/2�ei	dtXj
+�kj

++�j/2�


Tr�T�e−i	dtX̂jkj
−
	̂d�0�T�e−i	dtX̂jkj

+
� . �A3�

Let us now take the trace over the boson degrees of free-
dom. To do this, we use the widely known relation

eÂeB̂� = eAˆ 2+B̂2

2 +ÂB̂�

that holds for Â , B̂ that are linear in boson operators under
condition of Wick’s theorem. This allows us to express the
trace in terms of the two-point correlators of boson variables,

X̂i�t�X̂j�t���. We may assume X̂j��0 without compromising
generality. The resulting expression reads

Z��� j�t���

=
 DX̄+DX̄−Dk̄+Dk̄−ei	dtXj
−�kj

−+�j/2�ei	dtXj
+�kj

++�j/2�eÃd;

Ãd = −
 dtdt��1

2
ki

+�t�kj
+�t��T� �X̂i�t�X̂j�t����

+
1

2
ki

−�t�kj
−�t��T� �X̂i�t�X̂j�t����

+ ki
−�t�kj

+�t��X̂i�t�X̂j�t���� . �A4�

It is instructive to introduce at this stage “classical” and
“quantum” variables defining Xj

�=Xj ��xj /2, kj
�

=Kj �kj /2�. In these variables, the two-point correlators are
naturally collected to symmetrized noises Sij�t , t�� and Kubo-
like response functions Aij�t , t��,

Sij�t,t�� =
1

2
X̂i�t�X̂j�t�� + X̂j�t��X̂i�t��;

Aij�t,t�� = −
i

�
��t − t���X̂i�t�,X̂j�t���� .

and the action becomes
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Ãd = −
 dtdt��2Ki�t�Kj�t��Sij�t,t�� + iki�t�Kj�t��Aij�t,t��� ,

and does not contain �. One can now integrate over the aux-
iliary variables Kj�t�, kj�t� to get the action in terms of Xj�t�,
xj�t�. This Gaussian integral can be readily taken by the
saddle-point method. For our model, it is convenient to make
the time-local approximation first. We replace the kernels Sij,
Aij with their time-local expressions �Eqs. �7� and �8� and
perform integration over K, k to arrive at Eq. �9�.

APPENDIX B: AUGMENTED BLOCH-REDFIELD
EQUATION AND LINDBLAD FORM

In this appendix we cast the Eq. �13� to the Lindblad
form33 to illustrate the entanglement of the qubit and detector
and to prove the positivity of the density matrix encompass-
ing the qubit and output variable of the detector.

To specify this underlying density matrix, it is useful to
introduce a quantum variable p̂ defined as

p̂ = 

0

t

V̂�t��dt�.

This variable represents the integrated detector output over
the interval �0, t�. It differs only by a factor t from the out-
come Vo of the measurement at the same time interval �0, t�
as we have defined in the main text.

We denote by p and �p� the eigenvalue and eigenvector of
p̂, respectively: p̂�p�= p�p�. The subject of our interest is the
time-dependent reduced density matrix in the space �spin�
� �p�, 	̂�p , p� ; t�, where “hat” denotes the matrix in the pseu-
dospin space. Since p is related to Vo upon a factor, this

matrix is equivalent to R̂�Vo ,Vo�� used in the main text. The
quantity 	̂��� in the augmented Bloch-Redfield equation is
related to the diagonal part of this density matrix by Fourier
transform

	̂�p,p;t� =
 d�e−ip�	̂��,t� . �B1�

Making the inverse Fourier transform, we deduce from Eqs.
�13� and �B1� the equation for 	̂�p , p ; t�:

� 	̂�p,p;t�
�t

= −
i

�
�Hq, 	̂�p,p;t�� +

S22

2

�2	̂�p,p;t�
�p2

−
a21

2
� � 	̂�p,p;t�

�p
�̂3 + �̂3

� 	̂�p,p;t�
�p

�
−

iS12

�
� � 	̂�p,p;t�

�p
�̂3 − �̂3

� 	̂�p,p;t�
�p

�
−

S11

�2 �	̂�p,p;t� − �̂3	̂�p,p;t��̂3� . �B2�

This is an evolution equation in partial derivatives.
Next, we demonstrate that Eq. �B2� is indeed of a Lind-

blad type. This also proves that the density matrix satisfying
the equation has positive diagonal elements. We work in the
space �spin� � �p�. We can check that the operator ô= i �

�p has
the following properties:

p�	̂ô�p�� = − i
� 	̂�p,p�;t�

�p�
, �B3a�

p�ô	̂�p�� = i
� 	̂�p,p�;t�

�p
. �B3b�

The Lindblad form of an evolution equation reads33,34

� 	̂

�t
= −

i

�
�H, 	̂� +

1

2�
�

��L̂�	̂,L̂�
†� + �L̂�, 	̂L̂�

†�� , �B4�

where H is a Hermitian operator, generally not coinciding

with the qubit Hamiltonian, and L̂� ��=1, ¯� are arbitrary
operators. We need to prove that a proper choice of the Lind-

blad operators L̂� and the Hamiltonian H reproduces Eq.
�B2�.

To do so, we introduce two Lindblad operators as follows:

L̂1 =�4S11S22 − 4S12
2 − �2a21

2

4�2S22
�̂3, �B5a�

L̂2 = �S22�ô −
S12

�S22
�̂3 −

ia21

2S22
�̂3� , �B5b�

here 4S11S22−4S12
2 −�2a21

2 �0 is guaranteed by the Cauchy-
Schwartz inequality �see Sec. II�. The Hermitian operator
reads:

H = Hq −
�a21

2
ô�̂3, �B6�

where Hq is the qubit Hamiltonian. We substitute the opera-
tors to Eq. �B4� to obtain the following:

� 	̂�p,p�;t�
�t

= −
i

�
�H, 	̂�p,p�;t�� +

S22

2
�2

�2	̂�p,p�;t�
�p � p�

+
�2	̂�p,p�;t�

�p2 +
�2	̂�p,p�;t�

�p�2 �
−

a21

2
� � 	̂�p,p�;t�

�p�
�̂3 +

� 	̂�p,p�;t�
�p

�̂3

+ �̂3
� 	̂�p,p�;t�

�p
+ �̂3

� 	̂�p,p�;t�
�p�

�
−

iS12

�
� � 	̂�p,p�;t�

�p
�̂3 +

� 	̂�p,p�;t�
�p�

�̂3

− �̂3
� 	̂�p,p�;t�

�p
− �̂3

� 	̂�p,p�;t�
�p�

�
+

S11

�2 ��̂3	̂�p,p�;t��̂3 − 	̂�p,p�;t�� . �B7�

We made use of the properties �B3a� and �B3b�. We have
not done yet since the above equation is for a two-indexed
density matrix 	̂�p , p�� and not for its diagonal part. We still
have to prove that the above equation does not mix the di-
agonal and nondiagonal elements. So that, to relate Eq. �B2�
with Eq. �B7�, we change variables as follows:
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Ps =
p + p�

2
, �B8a�

Pd =
p − p�

2
. �B8b�

Thus,

�

�p
=

1

2
� �

�Ps
+

�

�Pd
� , �B9a�

�

�p�
=

1

2
� �

�Ps
−

�

�Pd
� . �B9b�

From Eqs. �B7�, �B9a�, and �B9b� we obtain:

� 	̂�Ps,Pd;t�
�t

= −
i

�
�H, 	̂�Ps,Pd;t�� +

S22

2

�2	̂�Ps,Pd;t�
�Ps

2

−
a21

2
� � 	̂�Ps,Pd;t�

�Ps
�̂3 + �̂3

� 	̂�Ps,Pd;t�
�Ps

�
−

iS12

�
� � 	̂�Ps,Pd;t�

�Ps
�̂3 − �̂3

� 	̂�Ps,Pd;t�
�Ps

�
+

S11

�2 �̂3	̂�Ps,Pd;t��̂3. �B10�

Equations �B2� and �B10� has the same form. Therefore, we
have proved that 	̂�p , p ; t� satisfies the Lindblad equation in

the �spin� � �p� space matrix form and thus is positive.
We can straightforwardly extend the above scheme to Eq.

�17� of Sec. II that is valid for the case of three detectors. In
this case, we introduce six Lindblad operators

L̂1i =�4S11S22 − 4S12
2 − �2a21

2

4�2S22
�̂i, �B11a�

L̂2i = �S22�ôi −
S12

�S22
�̂i −

ia21

2S22
�̂i� , �B11b�

where i=1,2 ,3. The Hermitian operator reads:

H = Hq −
�a21

2 �
i=1

3

ôi, �B12�

where ôi= i �
�pi

and pi are the eigenvalues of the operator p̂i

=	0
t V̂i�t��dt� �i=1,2 ,3� corresponding to each detector.
To conclude, we have shown that the density matrix

	̂�p , p� ; t� in the space �spin� � �p� satisfies the Lindblad
equation, and thus its diagonal part is positive. The diagonal
part of the matrix is related to the quantity 	̂�� , t� in Sec. II
by the Fourier transform. We note that Lindblad operators
Eqs. �B5a�, �B5b�, �B11a�, and �B11b� include both the de-
gree of qubit and the degree of the detector�s�. This signals
the entanglement of the qubit and detector�s� In this sense,
we measure both the qubit and detector�s� in the context of
FCS theory.
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